Baer sums for a natural class of monoid extensions

نویسندگان

چکیده

Abstract It is well known that the set of isomorphism classes extensions groups with abelian kernel characterized by second cohomology group. In this paper we generalise characterization to a natural class monoids, cosetal extensions. An extension "Equation missing" if for all $$g,g' \in G$$ g , ? ? G in which $$e(g) = e(g')$$ e ( ) = , there exists (not necessarily unique) $$n N$$ n N such $$g k(n)g'$$ k . These notion special Schreier extensions, are themselves examples Just as group case where semidirect product could be associated each kernel, show (with kernel), can uniquely associate weakly split extension. The combined suitable factor provide granting full supplying Baer sum.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

on direct sums of baer modules

the notion of baer modules was defined recently

BAER AND QUASI-BAER PROPERTIES OF SKEW PBW EXTENSIONS

A ring $R$ with an automorphism $sigma$ and a $sigma$-derivation $delta$ is called $delta$-quasi-Baer (resp., $sigma$-invariant quasi-Baer) if the right annihilator of every $delta$-ideal (resp., $sigma$-invariant ideal) of $R$ is generated by an idempotent, as a right ideal. In this paper, we study Baer and quasi-Baer properties of skew PBW extensions. More exactly, let $A=sigma(R)leftlangle x...

متن کامل

Baer Extensions of BL-algebras

In this paper we define Baer BL-algebras as BL-algebras with the property that co-annihilator filters are generated by central elements. We use sheaf-theoretic techniques to construct a Baer extension of any BLalgebra, that is to embed any nontrivial BL-algebra A into a Baer BLalgebra A∗. The embedding turns to be an isomorphism if A is itself a Baer BL-algebra. 2000 MSC: 08A72, 03G25, 54B40, 0...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Semigroup Forum

سال: 2021

ISSN: ['0037-1912', '1432-2137']

DOI: https://doi.org/10.1007/s00233-020-10156-9